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Last time

• Hypothesis testing as a 6-step process 
• One-sided and two-sided tests
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This time 
• Assessing statistical significance 
• The curse of multiple testing





One-tailed vs two-tailed tests

• Directional test: 
• p-value = 1 - p(tobserved ≥ t248)



One-tailed vs two-tailed tests

• Two-tailed (non-directional test) 
• p-value = 1 - p(tobserved ≥ t248) + p(tobserved ≤ t248)



Two-tailed results

Two Sample t-test

data:  BMI by PhysActive
t = 2.4452, df = 248, p-value = 0.01517
alternative hypothesis: true difference in means is not equal 
to 0
95 percent confidence interval:
 0.4329999 4.0193201
sample estimates:
mean of x mean of y 
 29.63752  27.41136 

p-value is twice 
as large for two-
tailed test versus 
one-tailed test: 
data are less 
surprising!

ttestResult = t.test(BMI~PhysActive,data=NHANES_sample,var.equal=TRUE,
    alternative='two.sided')



Step 6: Assess the “statistical significance” of the 
result

• What does “statistical significance” mean? 
• How much evidence against the null hypothesis do we 

require before rejecting it?



The (in)famous p<0.05

• “If P is between .1 and .9 there is 
certainly no reason to suspect the 
hypothesis tested. If it is below .02 it is 
strongly indicated that the hypothesis 
fails to account for the whole of the facts. 
We shall not often be astray if we draw a 
conventional line at .05” 

• “it is convenient to draw the line at about 
the level at which we can say: Either 
there is something in the treatment, or a 
coincidence has occurred such as does 
not occur more than once in twenty 
trials”

Sir Ronald Fisher

“the single most 
important figure 
in 20th century 
statistics” - Efron



p<0.05 was never meant to be a fixed rule

• Fisher: 
• “no scientific worker has a 

fixed level of significance at 
which from year to year, and 
in all circumstances, he 
rejects hypotheses; he rather 
gives his mind to each 
particular case in the light of 
his evidence and his ideas” 

• It probably became a ritual 
because of the difficulty in 
computing exact p-values in 
early days 
• All of the charts had entry for 

.05

Fisher (1925)



Arguments against p<0.05
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Redefine statistical significance
We propose to change the default P-value threshold for statistical significance from 0.05 to 0.005 for claims of 
new discoveries.

Daniel J. Benjamin, James O. Berger, Magnus Johannesson, Brian A. Nosek, E.-J. Wagenmakers,  
Richard Berk, Kenneth A. Bollen, Björn Brembs, Lawrence Brown, Colin Camerer, David Cesarini,  
Christopher D. Chambers, Merlise Clyde, Thomas D. Cook, Paul De Boeck, Zoltan Dienes, Anna Dreber, 
Kenny Easwaran, Charles Efferson, Ernst Fehr, Fiona Fidler, Andy P. Field, Malcolm Forster,  
Edward I. George, Richard Gonzalez, Steven Goodman, Edwin Green, Donald P. Green, Anthony Greenwald,  
Jarrod D. Hadfield, Larry V. Hedges, Leonhard Held, Teck Hua Ho, Herbert Hoijtink, Daniel J. Hruschka, 
Kosuke Imai, Guido Imbens, John P. A. Ioannidis, Minjeong Jeon, James Holland Jones, Michael Kirchler, 
David Laibson, John List, Roderick Little, Arthur Lupia, Edouard Machery, Scott E. Maxwell,  
Michael McCarthy, Don Moore, Stephen L. Morgan, Marcus Munafó, Shinichi Nakagawa,  
Brendan Nyhan, Timothy H. Parker, Luis Pericchi, Marco Perugini, Jeff Rouder, Judith Rousseau,  
Victoria Savalei, Felix D. Schönbrodt, Thomas Sellke, Betsy Sinclair, Dustin Tingley, Trisha Van Zandt,  
Simine Vazire, Duncan J. Watts, Christopher Winship, Robert L. Wolpert, Yu Xie, Cristobal Young,  
Jonathan Zinman and Valen E. Johnson

The lack of reproducibility of scientific 
studies has caused growing concern 
over the credibility of claims of new 

discoveries based on ‘statistically significant’ 
findings. There has been much progress 
toward documenting and addressing 
several causes of this lack of reproducibility 
(for example, multiple testing, P-hacking, 
publication bias and under-powered 
studies). However, we believe that a leading 
cause of non-reproducibility has not yet 
been adequately addressed: statistical 
standards of evidence for claiming new 
discoveries in many fields of science are 
simply too low. Associating statistically 
significant findings with P <  0.05 results 
in a high rate of false positives even in the 
absence of other experimental, procedural 
and reporting problems.

For fields where the threshold for 
defining statistical significance for new 
discoveries is P <  0.05, we propose a change 
to P <  0.005. This simple step would 
immediately improve the reproducibility of 
scientific research in many fields. Results 
that would currently be called significant 
but do not meet the new threshold should 
instead be called suggestive. While 
statisticians have known the relative 
weakness of using P ≈  0.05 as a threshold 
for discovery and the proposal to lower 
it to 0.005 is not new1,2, a critical mass of 
researchers now endorse this change.

We restrict our recommendation to 
claims of discovery of new effects. We do 

not address the appropriate threshold for 
confirmatory or contradictory replications 
of existing claims. We also do not advocate 
changes to discovery thresholds in fields 
that have already adopted more stringent 
standards (for example, genomics  
and high-energy physics research; see the 
‘Potential objections’ section below).

We also restrict our recommendation 
to studies that conduct null hypothesis 
significance tests. We have diverse views 
about how best to improve reproducibility, 
and many of us believe that other ways of 
summarizing the data, such as Bayes factors 
or other posterior summaries based on 
clearly articulated model assumptions, are 
preferable to P values. However, changing the 
P value threshold is simple, aligns with the 
training undertaken by many researchers, 
and might quickly achieve broad acceptance.

Strength of evidence from P values
In testing a point null hypothesis H0 against 
an alternative hypothesis H1 based on data 
xobs, the P value is defined as the probability, 
calculated under the null hypothesis, that a 
test statistic is as extreme or more extreme 
than its observed value. The null hypothesis 
is typically rejected — and the finding is 
declared statistically significant — if the  
P value falls below the (current) type I error 
threshold α =  0.05.

From a Bayesian perspective, a more 
direct measure of the strength of evidence 
for H1 relative to H0 is the ratio of their 

probabilities. By Bayes’ rule, this ratio may 
be written as:
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where BF is the Bayes factor that represents 
the evidence from the data, and the prior 
odds can be informed by researchers’ beliefs, 
scientific consensus, and validated evidence 
from similar research questions in the same 
field. Multiple-hypothesis testing, P-hacking 
and publication bias all reduce the credibility 
of evidence. Some of these practices reduce 
the prior odds of H1 relative to H0 by 
changing the population of hypothesis tests 
that are reported. Prediction markets3 and 
analyses of replication results4 both suggest 
that for psychology experiments, the prior 
odds of H1 relative to H0 may be only about 
1:10. A similar number has been suggested 
in cancer clinical trials, and the number 
is likely to be much lower in preclinical 
biomedical research5.

There is no unique mapping between 
the P value and the Bayes factor, since the 
Bayes factor depends on H1. However, the 
connection between the two quantities 
can be evaluated for particular test 
statistics under certain classes of plausible 
alternatives (Fig. 1).
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over the credibility of claims of new 
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findings. There has been much progress 
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several causes of this lack of reproducibility 
(for example, multiple testing, P-hacking, 
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that would currently be called significant 
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instead be called suggestive. While 
statisticians have known the relative 
weakness of using P ≈  0.05 as a threshold 
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claims of discovery of new effects. We do 
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confirmatory or contradictory replications 
of existing claims. We also do not advocate 
changes to discovery thresholds in fields 
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clearly articulated model assumptions, are 
preferable to P values. However, changing the 
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training undertaken by many researchers, 
and might quickly achieve broad acceptance.
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xobs, the P value is defined as the probability, 
calculated under the null hypothesis, that a 
test statistic is as extreme or more extreme 
than its observed value. The null hypothesis 
is typically rejected — and the finding is 
declared statistically significant — if the  
P value falls below the (current) type I error 
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where BF is the Bayes factor that represents 
the evidence from the data, and the prior 
odds can be informed by researchers’ beliefs, 
scientific consensus, and validated evidence 
from similar research questions in the same 
field. Multiple-hypothesis testing, P-hacking 
and publication bias all reduce the credibility 
of evidence. Some of these practices reduce 
the prior odds of H1 relative to H0 by 
changing the population of hypothesis tests 
that are reported. Prediction markets3 and 
analyses of replication results4 both suggest 
that for psychology experiments, the prior 
odds of H1 relative to H0 may be only about 
1:10. A similar number has been suggested 
in cancer clinical trials, and the number 
is likely to be much lower in preclinical 
biomedical research5.

There is no unique mapping between 
the P value and the Bayes factor, since the 
Bayes factor depends on H1. However, the 
connection between the two quantities 
can be evaluated for particular test 
statistics under certain classes of plausible 
alternatives (Fig. 1).
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Why is 0.05 problematic?

• p<0.05 indicates relatively weak evidence against the null 
• We will return to this later…



Statistical inference as decision making:  
Neyman/Pearson

• “no test based upon a theory of probability 
can by itself provide any valuable evidence 
of the truth or falsehood of a hypothesis. 
But we may look at the purpose of tests 
from another viewpoint. Without hoping to 
know whether each separate hypothesis is 
true or false, we may search for rules to 
govern our behaviour with regard to them, 
in following which we insure that, in the long 
run of experience, we shall not often be 
wrong” 

• We don’t know which specific decisions are 
right or wrong, but if we follow the rules, we 
know how often wrong decisions will occur

Egon Pearson
(1895-1980)

Jerzy Neyman
(1894-1981)

Egon Pearson
(1895-1980)

Jerzy Neyman
(1894-1981)

Egon 
Pearson

Jerzy 
Neyman



Example: statistical quality control

https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/SanitationTransportation/ucm056174.htm



Reject H0 Fail to Reject H0

HA is true Correct

(hit)

Type II error

(miss or false 

negative)

H0 is true
Type I error


(false alarm or

false positive)

Correct

(correct rejection)

Statistical decision

Reality

P(Type I error) = 𝛂 The long-run probability of 
rejecting H0 when it is true



Reject H0 Fail to Reject H0

HA is true Correct

(hit)

Type II error

(miss or false 

negative)

H0 is true
Type I error


(false alarm or

false positive)

Correct

(correct rejection)

Statistical decision

Reality

P(Type I error) = 𝛂 

P(Type II error) = 𝛃

The long-run probability of 
rejecting H0 when it is true

The long-run probability of failing 
to rejecting H0 when HA is true



Reject H0 Fail to Reject H0

HA is true 1-𝛃

(statistical power)

𝛃

H0 is true
𝛂


(false positive 
rate)

1-𝛂

Statistical decision

Reality

alpha: How likely are we to reject H0 when H0 is true? 



Reject H0 Fail to Reject H0

HA is true 1-𝛃

(statistical power)

𝛃

H0 is true
𝛂


(false positive 
rate)

1-𝛂

Statistical decision

Reality

alpha: How likely are we to reject H0 when H0 is true? 

power: How likely are we to reject H0 when HA is true?



Breakout!

• Researchers generally set their false positive rate to 0.05, 
but their false negative rate (1-power) to 0.2 

• Why might protecting from false positives be more 
important than protecting from false negatives?



Hypothesis testing demo

• In RStudio: 
• library(shiny)
• runGitHub(“psych10/psych10”,  
  subdir=“inst/hypothesis/“)





What does a significant result mean?

• You run an experiment comparing means between two 
groups, and you find a significant difference (p=.01) 
• Does it mean that you have absolutely disproved the 

null hypothesis? 
•
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What does a significant result mean?

• You run an experiment comparing means between two 
groups, and you find a significant difference (p=.01) 
• Does it mean that you have absolutely disproved the 

null hypothesis? 
• Does it mean that you have absolutely proved your 

experimental hypothesis? 
• No - statistics cannot prove or disprove hypotheses! 
• It provides relative evidence against the null



What does a significant result mean?

• Does it mean that you have found the probability of the 
null hypothesis being true? 

• Does it mean that you can deduce the probability of the 
altnernative hypothesis being true? 
• No: The p-value is the probability of the data, not the 

probability of any hypothesis 
• p-value = P(D|H0) 
• If we want to know P(H0|D), what do we need to 

use? 
• And what do we need to know in order to use it?



What does a significant result mean?

• Does it mean that you know, if you decide to reject the 
null hypothesis, the probability that you are making the 
wrong decision? 
• Restate this: P(H0 is true|p<alpha)?



What does a significant result mean?

• Does it mean that you know, if you decide to reject the 
null hypothesis, the probability that you are making the 
wrong decision? 
• Restate this: P(H0 is true|p<alpha)? 
• p-values are probabilities of data, not hypotheses!



NHST in a modern context

• Null hypothesis statistical testing can become very 
challenging in the context of modern science and big 
data 

• Traditionally, researchers measured very few variables on 
each individual 

• In modern science, we can often measure millions of 
variables per individual 
• Genomics 
• Brain imaging



A real-life example of hypothesis testing in action

• We know that schizophrenia has a strong genetic basis 
• About 80% of variation in schizophrenia is due to genetic 

differences 
• Research has begun to look at which specific genes are 

involved 
• Look at many places in the genome where people differ 

in their genetic code (“polymorphisms”) 
• Usually about 1 million different locations 

• Test whether people with schizophrenia are more likely to 
have a different version of the genetic code at that 
location



The problem with multiple hypothesis tests

• Let’s say we did 1 million hypothesis tests at p < 0.05 
• # of expected errors if the null hypothesis is true 

• N * alpha = 1,000,000 * 0.05 = 50,000 
• p < 0.05 is appropriate to control the error rate for a single 

test 
• What we really want to control is the “familywise error rate” 

- the likelihood of at least one false positive across our 
entire “family” of tests 

• With 1 million tests at p < 0.05, the familywise error rate will 
be ~1 
• Every study will have false positives



Controlling for multiple comparisons

• If all of the tests are independent, we can control this by 
dividing our alpha level by the number of tests 
• “Bonferroni correction” 
• For 1 million tests, this would be: 

• p < 0.05/1,000,000 (5e-08) 
• This ensures that we expect a false positive finding in 

only 1 out of every 20 studies



Simulating the effects of multiple testing
nTests=10000

uncAlpha=0.05
uncOutcome=replicate(nTests,
          sum(rnorm(nTests)<qnorm(uncAlpha)))

print(paste('uncorrected:',mean(uncOutcome>0)))
[1] "uncorrected: 1"

corAlpha=0.05/nTests
corOutcome=replicate(nTests,
           sum(rnorm(nTests)<qnorm(corAlpha)))

print(paste('corrected:',mean(corOutcome>0)))
[1] "corrected: 0.047"



“Manhattan plot” of genetic associations with 
schizophrenia

odds ratio = 1.167

odds without risk allele: 1/138

odds with risk allel:  1/118

36,989 cases 
113,075 controls

PGC, 2014



“Manhattan plot” of genetic associations with 
schizophrenia

odds ratio = 1.08 

odds without risk allele: 1/138

odds with risk allele:  1/128

36,989 cases 
113,075 controls

PGC, 2014



Statistical significance and sample size

• Meehl’s paradox 
• In many areas of 

science (such 
as physics), 
higher N 
provides more 
precise models 

• Using NHST, as 
N becomes 
large, everything 
becomes 
significant

True effect size = 0.01 SD



Recap

• We can use statistics to test hypotheses 
• P-values provide us a measure of how surprising the data 

would be if there was truly no effect 
• They do not necessarily tell us how strong the effect is 

• We can use either theoretical distributions or 
randomization to determine the distribution of our 
statistic under the null hypothesis 

• When we perform multiple tests, we have to adjust our 
threshold to prevent inflation of false positive rates


