Stanford University

Session 5: Probability 2

Stats 60/Psych 10
Ismael Lemhadri
Summer 2020



Stanford University

News
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+ Problems already available on the course website
+ Try to solve them before the review!



Stanford University

News

- Probabillity Review - Tuesday 14th, 1:30PM PDT
- Practice Problems are available on the course website
- Try to solve them before the review!

| ast time

- What is a probability?
* Rules of probability

. Probability distributions
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This time

- The normal probabillity distribution
+ Conditional probability
- Bayes’ rule
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The normal distribution

Areas Height
(percent) (percent)
-z P z
A NORMAL TABLE

z  Height Area

000 398 o

005 39.34 3.99
0.10 39.69 7.97
0.15 3945 1192
020 39.10 15.85 1.

Height Area 2  Height Area

1295 86.64 300 0443 99730
12.00 87.89 3.05 0381 99.771
11.09  89.04 3.10 0327 99.806
1023  90.11 315 0279 99.837
940 91.09 320 0238 99.863

e e e
e ot pua 8t |
=RAR R

025 38,67 19.74
030 38.14 2358
035 3752 21.3:7

8.63 9199 325 0203 99.885
790 92.8) 330 0172 99.903
85 121 9357 335 0.146 99.919

g3

040 36.83 31.08 90 6.56 94.26 340 0.123 99,933
045 3605 34.73 95 596 94.88 345 0.104 99,944
050 35.21 38 2.00 540 9545 350 0.087 99,953
055 3429 4. 2.05 488 9596 355 0.073 99.961

060 3332 4515 210 440 9643 3.60 0.061 99968
065 3230 4843 2.15 3.96 96.84 365 0.051 99974
070 31.23 516 2.20 355 9.2 370 0.042 99,978

"N ae an .



Stanford University

The normal distribution

Normal table:
Z-Score

eight
- Area
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The normal distribution

Normal table:
Z-Score

eight
- Area
Learning Goals:
derive percentiles from the table

understand why z-scores are useful
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The normal distribution

Normal table:
- 7Z-Score

eight

- Area

Learning Goals:

»derive percentiles from the table

+ understand why z-scores are useful
+ https://shiny.rit.albany.edu/stat/stdnormal/

More on this in Tuesday’s review!


https://shiny.rit.albany.edu/stat/stdnormal/
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Conditional probabillity

- Simple probabillities:

- What is the likelihood that a US voter was a
Republican in 20167

- p(Republican) = 0.44

- What is the likelihood that a US voter voted for Donald
Trump in the 2016 Presidential Election?

»+ P(TrumpVoter) = 0.46
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Conditional probabillity

- Simple probabillities:

- What is the likelihood that a US voter was a
Republican in 20167

- p(Republican) = 0.44

- What is the likelihood that a US voter voted for Donald
Trump in the 2016 Presidential Election?

»+ P(TrumpVoter) = 0.46

» Conditional probability: Probability of one event, given
that some other has occurred

- P(TrumpVoter|Republican) = 7



Tree p(DJT|R)
diagram

p(HRC|R)
(registered P(BJTID)
Democrats or
Republicans
who voted for o(HRC|D)
either DJT

or HRC)
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Computing conditional probability

P(AN B)

P(AIB) = —p5

P(TrumpV oter N Republican)
P(Republican)

P(TrumpV oter| Republican) =

Limits the calculation to the set of B events
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Another view on conditional probability

P(D)=9/18=0.5 P(DJT)=10/18=0.55
P(R)=1 - P(D) =0.5 P(HRC) = 1 - P(DJT) = 0.45
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Another view on conditional probability

P(DJT)=10/18=0.55
P(DJTIR) = ?

P(DJTIR) = 9/9 = 1.0
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What does “independent” mean to you?
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Statistical Independence

- Knowing about one thing does not tell us anything about
the other

P(A|B) = P(A)

- Knowing the value of B doesn’t give us any additional
iInformation about the value of A

‘hey are statistically unrelated

- This has a very different meaning from the common
language meaning of “independence”
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Example: The proposed “independent” state of Jefferson

Let’s suppose they succeeded
For a current resident of CA:

B P(CA)=0.986

P(JF)=0.014

P(CA|JF)=0
f" r?i:;?j}'; | B Jefferson (1941)
| ] Jefferson - .

?;1%} A e political independence =
'-.,‘(:-‘, 5 : SN ' '
Nyl statistical dependence!

‘;:\f;:_ "'i'»-q. l}\\

R U '

N In general, mutually independent

S events will be statistically dependent
(@assuming p>0)
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Y
(m National Health and Nutrition Examination Survey

NHANES is a program of studies by the CDC designed to
assess the health and nutritional status of adults and children in
the United States. The survey is unigue in that it combines
interviews and physical examinations.

+ The survey examines a nationally representative sample of
about 5,000 persons each year.

- The NHANES interview includes demographic, socioeconomic,
dietary, and health-related questions. The examination
component consists of medical, dental, and physiological
measurements, as well as laboratory tests administered by
highly trained medical personnel.

- Avallable in R:
library (NHANES)
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An example: Are p
iIndependent in N

PhysActive

ys

AN

ical activity and mental health

—SY

Participant does moderate or vigorous-intensity sports, fithess or
recreational activities (Yes or No).

DaysMentHIthBad

Self-reported number of days participant's mental health was not good

out of the past 30 days.

NHANES adult = NHANES adult %>%
mutate (badMentalHealth=DaysMentHlthBad>7)



Are two draws from a single deck of cards (without replacing

the first card) independent?

yes A

no|B

.. Start the presentatior to see live centent. Stllro live content! Instzll tha app or get help at PollEv.com/app



An example: Are physical activity and mental health

iIndependent in NHANES?

NHANES adult 3%>%
summarlze (badMentalHealth=mean(badMentalHealth))

P(badMentalHealth)

0.164

NHANES adult %>%
group by (PhysActive) %>%
summarilize (badMentalHealth=mean (badMentalHealth))

P(badMentalHealth|~Active) 0.200

P(badMentalHealth|Active) 0.132
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Physical activity Is good - let's do some!
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Why independence matters

|
-
. J
b |

https://www.ted.com/talks/peter_donnelly_shows_how_stats_fool_juries
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Reversing a conditional probability

- We known P(A|B)
- How do we find out what P(B|A) is?
- \Why would this ever be useful?
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Alrport screening

we know: P(positive test | explosives)
we want to know: P(explosives| positive test)
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Medical testing

y | Prostate Cancer Facts
Prostate specific antigen (PSA)
_ Prostate cancer
- Tests can be characterized by two [ s the most common
factors: % '"""
Sensitivity:
N | g 1in/
. P(posmve test ‘ d|Sease) i men will be diagnased with the disease’
! EARLY DETECTION SAVES LIVES.
- 8 O % ; When deutfe;tr%gtg:taerl\(pa:lllgrsgarxlval rate
Specificity: : BE OVER 90%

For more information on prostate cancer,

visit prostalecancer.ca /')
Prostate Cancer Information Service
1-855-PCC-INFO (1-855-722-4636) j&?n‘a‘ﬁ“‘ S

DX N FINETA LM W N

-1 - P(positive test| no disease)
~70%

Charrable Registation Nunbe~

https://emedicine.medscape.com/article/457394-overview
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Table of possible outcomes

. Does not have
Has disease .
disease
Positive test “hit” “false alarm”
ositive tes P(DNT) P(~DNT)
. “miss” “true negative”
Negative test P(DN~T) P(~DN~T)

Sensitivity: P(positive test | has disease)
How do we compute it”?
Sensitivity = hits / (hits + misses)
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Table of possible outcomes

. Does not have
Has disease .
disease
Positive test “hit” “false alarm”
ositive tes P(DNT) P(~DNT)
. “miss” “true negative”
Negative test P(DN~T) P(~DN~T)

Specificity: P(negative test | no disease)
How do we compute it”?
Specificity = true negatives/(false alarms + true negatives)



A person selected at random receives a test for a disease and
the resultis positive. What do we need to know in order to
determine the likelihood that the person actually has the

disease? (select all that apply)

The specificity of the
test

The sensitivity of the
test

The probability of
getting the test

The probability that the
person has the disease

.. Start the presentation to see live centent. Still no live content! Install the app or get help at Pollev.com/app
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Interpreting test results

A person receives a positive test result

- We know the likelihood of a positive test given the
disease

- Sensitivity of the test: P(positive test|disease)

But what we really want to know is: is the likelihood that
the person actually has the disease”?

P(disease | positive test)

ow do we compute this “inverse probability”?
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Bayes’ rule

- A way to invert a conditional probabillity

P(B|A) % P(A)
P(B)

P(A|B) =
- |In the context of science:

data|hypothestis)P(hypothesis)
P(data)

P
P(hypothesis|data) = (
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Deriving Bayes' rule

- Remember the definition of P(AN B)
conditional probability: P(A[B) = P(B)

+ Rearrange to get the rule for
computing joint probability of
A and B:

P(AN B) = P(A|B)P(B)

S0 If we want to compute

P(BIA):
" P(ANB) P(A|B)P(B)
PBIA) = =50 =~ pA)
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Bayes’ rule

- For two outcomes, we can express it in a slightly clearer
way using the sum rule for probabilities:

P(B|A) % P(A)

P(AIB) = —= 5 &

P(B) = P(B|A) x P(A) + P(B| ~ A)  P(~ A)

P(B|A) « P(A)
(B|A) * P(A)+ P(B| ~ A) x P(~ A)

P(A|B) = -
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60 year old male: P(disease in next 10 years)=0.058
Sensitivity: P(T|D)=0.8
Specificity: P(~T|~D)=0.7

O
P(T|D)=0.8
%
P(~T|D)=0.2 0.8"0.058
P(D)=0.058 P(D|T)=
D) O (B 0.8*0.058 + 0.3*0.942
O
@ = 0.14
P(~D)=0.942 P(T]-D)=0.3
O
P(~T|~D)=0.7
O

https://www.cdc.gov/cancer/prostate/statistics/age.htm
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What do these probabilities mean®

+ The person either has a disease or
doesn’t

- How should we interpret this
probability?

- Objective probability

ong-run relative frequency that the
nypothesis is true

+ Subjective probability

+our degree of belief in the
nypothesis

now plausible is the hypothesis?
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What do these probabilities mean®

+ The person either has a disease or
doesn’t

- How should we interpret this
probability?

- Objective probability

ong-run relative frequency that the
nypothesis is true

+ Subjective probability

John Maynard
Keynes:

+our degree of belief in the

nypothesis “In the long run,

now plausible is the hypothesis? we are all dead”
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Statistics as learning from data

@OWledQD

P(H|D) @oothesi@
Y PH)
(Data D)
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Statistics as learning from data

- We almost always start with
some prior knowledge,
which leads us to test a
hypothesis

- Perform the PSA test

- We generally have some idea
of what to expect

- e.9. P(disease in next 10
years)=0.058

- We update our knowledge
based on the data using
Bayes’ rule

- P(disease|test result)=0.14

@owled@

P(H|D)

@oothesi@

(Data

—~———

P(H)



Stanford University

Dissecting Bayes' rule
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Dissecting Bayes' rule

prior: how likely did we
think A was before we
collected data?
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Dissecting Bayes' rule

posterior: how likely do we prior: how likely did we
think A is after we think A was before we
collected data? collected data?
P(B|A
P(A|B) = (B]4) x P(A)

P(B)
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Dissecting Bayes' rule

posterior: how likely do we prior: how likely did we
think A is after we think A was before we
collected data? collected data?
P(B|A)
P(A|B) = P(A
(AIB) = 5 * P

relative likelihood of the data given A,
versus the overall likelihood
of the data
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Odds

- A ratio expressing the likelihood of something happening
relative to not happening

odds =

-+ 1/1: “even odds”
- Example: What are the odds of rolling a six using a one-
sided die?

1

odds in favor = odds against =

CDIU(|CDI»—\
o ||
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Sayesian odds

P(A) 0.058
or odds = — 0.061
B O = 10.058

prior odds =

0.14
P(A|B) posterior odds = —— = 0.16
P(~ A|B) 0.86

posterior odds =

terior odd
posterior oads _ , .,

likelthood ratio =
1kelthood ratio orior odds
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Summary

+ Conditional probabilities allow to express the likelihood of
some event, given some other event

+ The statistical concept of independence revolves around
whether one variable provides information about the
value of another

Bayes’ theorem provides us with the means to invert
conditional probabillities



